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STRESS-CONCENTRATION AT A CYLINDRICAL HOLE
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P. F. Gou

Department of Mechanical Engineering, Polytechnic Institute of Brooklyn,
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Abstract—The solution of the problem of a cylindrical hole in a field of longitudinal tension is found in the linear
theory of elastic dielectrics in which the potential energy density of deformation and polarization depends on the
gradient of the polarization as well as on the strain and on the polarization itself. The stress-concentration factor
at the surface of the cylindrical hole is found.

1. INTRODUCTION

IN THIS paper a boundary-value problem is solved within the framework of Mindlin’s [1]
theory of elastic dielectrics with polarization gradient.

In the following section, the field equations and the stress functions [2] analogous to the
Papkovitch’s functions of classical elasticity are presented. In the third section, the stress
functions are applied to solve the boundary-value problem for the stress concentration at a
cylindrical hole in a medium of infinite extent subject to a longitudinal tension. It is found
that the stress-concentration factor depends upon the radius of the cylindrical hole, three
length properties of the material, Poisson’s ratio, two Poisson-like ratio and the reciprocal
dielectric susceptibility. In the fourth section, the behavior of stress concentration factor
is examined by employing the asymptotic representation for the modified Bessel functions.
There is a certain range of material properties for which the stress-concentration factor is
higher than the constant value 3 obtained by using the classical theory of elasticity.

2. FIELD EQUATIONS AND GENERAL SOLUTION

The field equations for the linear theory of an elastic dielectric with polarization gradient
have been presented by Mindlin [1] and are reproduced here for convenience.

Let the body occupy a region V, whose boundary S separates it from a vacuum V.
In the absence of an external body force and an external electric field the “‘displacement”
equations of equilibrium in vector forms are

CaaVU+(C15+Ca)VV . u+d, VP +(dy,+d,)VV.P = 0 (2.1a)
d44V2u+(d12+d44)VV.u+(b44+b77)V2P+(b12+b44——b77)VV.P—aP—V(p = 0 (Zlb)
—gVip+V.P=0, inV (2.1¢)

V=0, inV. (2.1d)
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The boundary conditions for a free surface are

n.t = {2.2aj
n.E=0 {2.2b}
n.{—gl[Vol+P) = 0. {2.2¢i

In the above equations, T is the stress, E is derivable from the energy density of deforma-
tion and polarization W (i.e. E;; = ¢W/CP,; ), ¢ is the potential of the Maxwell self-field,
P is the polarization, g, is the permittivity of a vacuum, n is the unit outward normal.
[Vo] is the jump in V@ across S.

For an isotropic and centrosymmetric material, the energy density W of deformation
and polarization is given by

W = boP,;+3aPP,+3b, 1P, P j+3bag +b79)P; Py +5(bas—b57) P P

L1 g FRLa )

-+ %(‘1 28{;8_“ + C448{'j8§j + di 2}),““8}‘1* + 26{44?,&561}'! (23}
where
Hdu, du;)
] i
g, = —f—d gt (2.4
o 2(6)(, cﬁxj)

in which u; is the displacement. Then the constitutive relations are

- oW

i api 3
ow . . .
E; = 3P = b1,0;;Pux+(bag +b17)P; i+ (byy —byo) P ;4 dy 50,60+ 2daatij + b0y (2.6)
¥R
oW B . .
Ty = 5 = 130 P+ das(Pyi+ P ) 40150180+ 20448, (27

i
Schwartz has shown [2] that any solution {u, P, ¢} of the displacement equations of
equilibrium in a region ¥ bounded by a surface S, can be expressed as

. k
"= B——-%V(r.B+B0}+£§3k2(k2-kl)vv Bk Vo +=2(1 +az)
x (1 — BV WVg — koK — BVV . K) (2.8)
P = —a 'caulky—k )WV . BtV —a (1 +aso)(1 — BV Ve + K — BVV . K (2.9)

provided that B, B,, K and ¢ satisfy in V, the equations

VB =0 (2.10a)
V2B, = 0 (2.10b)
(1—BVI)K =0 {2.10¢)

(1-BVHV3p = 0 (2.10d)
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where r is the position vector, and

% = (12 +Caa)lcr2+2040) = H1—) (2.11a)
ky = (dy,+2d44)/(ci5+2¢44) (2.11b)
k, = dua/Cas (2.11¢)
12 = go(1+aep) (b, +2bss)— K (dy, +2d,4,)] (2.11d)
B =a Y(by+b;7)—K,dya) (2.11¢)

Each of the parameters [, and [, has the dimension of length.
In the cylindrical coordinate system r, 6, z, in a state of plane strain, the vector displace-
ment u and the vector polarization P may be written as

u = ue,+ue,, u, =0, (2.12)
and
P = Pe,+ Py, P.=0 (2.13)

respectively, where e, and e, are unit vectors positive in the directions r, # increasing and
u,, Uy, P, and P, are functions of r and 6.
The components of strain dyadic &, in plane strain, are

e = au’ — 1 %_‘_l%_ﬂ’
"= b =N er Tr a0 1|
L ou, u, 2.14)

oo = — — +— g, =¢, =¢&, =0.
r 66 r’ rz 6z zZ

According to equations (2.6)and (2.7), the constitutive relations, in cylindrical coordinate,
are

T, = duv.P+2d44%+cuv.u+2c44aa”r', (2.152)
T = d44(%%%—%+%) +c44(%%—%+%), (2.15b)
top = d,,V . P+2d44(1 861;" P)+cuv u+2c44(i%‘;"+“r), (2.15¢)
E, = ble.P+2b44%+duv.u+2d44aa—ur'+bo, (2.15d)
ot B B 0

Ardo T 0

Eq =

r

( 18P, P, aPo)
0 or

0P, 10P, Ps 1 0u, uy Oug
(E T ) d44( ~t5 ) (2.15f)
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3. SOLUTION BY MEANS OF STRESS FUNCTIONS

In cylindrical coordinates r, 0, z a stress-field of simple tension, 7T, in the planc of r and #
is given by

7, = $T(l +cos 20) (3.1a)
g9 = 5T(1 —cos 20) (3.1b)
T,5 = — 5T'sin 20. {3.1¢)

We wish to add a stress field which will produce a free surface at r = R and vanish at infinity.
From equations (3.1), the conditions which the additional field must satisfy on r = R are

7,,= —+T(1 +cos 20) {3.2a)
T, = +Tsin 20 {1.2b)
E, =0 (3.2¢)
Ep=0 (3.2d)

For the addition field, we take the stress functions B, By, K and ¢ to be of the form

B = B{r, O)e,, B,= B, =0 (3.3a)
By = Bo(r, 0), ® = o(r, ) {3.3b)
K = K(r, Oe,. (3.3¢)
For B, B,, K and ¢ we take

B=A;r"'cost (3.4a)
By = Aylogr+ A, % cos 26 (3.4b)
K = AzKl(;—‘) cos 0 (3.4¢)
@ = ASKO(gL) +A6K2(;—) cos 20+ A,r 2 cos 20 (3.4d)

1 1

where Ky(r/l), K ir/l,) and K,{r/l,} are the modified Bessel functions of the second kind
of orders zero, one and two respectively. It may be verified that these functions satisfy
equations (2.10) and give displacements and stresses that vanish at infinity.

In terms of stress functions given in equations (3.3), the components of displacement and
polarization can be written as

u, = Bcosf— %_{rB cos 0+ By)+a” ‘{*44k2(k2~k,)é;(v .B)

+‘(k2a_ i +k280"‘k160){%€§‘—k2{ak L +80)Z§V2(%§§) _kl(K COs 8”‘“{%;;‘;V . K (353)
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10
- Bsin 8— 56(ch03 O+ By)+a ey ks (k, —kl); -U;‘Q{V.B)
_ 10¢ 1 do
+(k,a 14‘}‘280“"%30); 26 kyla” O)[sz(r 59)
; 219
—k,| —Ksin0—1I5r a—QV.K , (3.5b)

6 ~
—a” tegqlky — 1HV B)+80—@—a'1(1+a80)(1 IZVZ}%?

+ K cos 9—1%56;V K, (3.5¢)
- 10 1ou _ 18
= —q 1(344(](2—1{1); Eé(v B)+e,- a_e_a 1(1 +a80)(1—12V2 . ;q%
10
~Ksinf—-5~—-V.K.
sin lzr OBV K {(3.5d)

Substitution of (3.4) in (3.5) gives

2

-1
u, = Alr“—%r‘1A3+A5k1801;‘K1(lL) + {Al(i———}-Za"kz(kz-kl)cur”]
1

+ Azkalyr” Kz(lz) + Agar 3+ Agkyeoly ‘[K,(i) +zt,r—11<2({,u
1

—2A4,r 3(kya"t +k230—k1£0)} cos 20 (3.6a)

_ _ 1
= {Al[%(a—l)r 14 2a lkz(kz—kl)c44r“3]+A2k2[§Kl(f )—Hzr'le(g H
2

_ - r - .
+ Agor >+ 2 A6k, gor 1Kz(l—) —2A,r 3(k2a“+k280—k280)} sin 26, (3.6b)
1
——Assoll‘lKl(%) + {—2A1r‘3a“1(k2~k1)c44—Azlzr“1K2(-;—)
1 2

_ r -
— Aseol; 1K‘(}-) — Agoly I[K,(;) +2I1r“‘K2(IL)] +2A7r'3a”‘} cos26, (3.6¢)
1 1 1

5 - ' 1
= {—2A1r a7 Nky—ky)cg— A [ZKI(I )+lzr_1K2(l ):l
2

—2Agegr 'K, +245a” 1r“3} sin 26. (3.6d)
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Using the constitutive relations, we obtain the stress tensor 1;; and E;; that appear in
the boundary conditions:

T, = w—Aié’&Arwz+A3ac‘44r‘~2”2‘458‘);; 1(;&'1 "‘kz}(ﬂ;:&"“ iKl{g:)

H

+ { =24 0,7t 6400, 0t + 2 Agsoly Mk —Ka)e

(65 r“2K7(! )+r 'K (g ) }+IZA;C,M(H”‘!{2+80k2w80k1)r”“} cos 28, (3.7a)
1 i 4

Ty = {-Aifxc,ur"z_6A4acmr"4+4,4(,r“180{}{2»»i\'t)cM{:“iK}(;‘) +3r” ‘Kz{;;) l
i i ]

~ 1245800k — ke 08 “} sin 20, {3.70b}
Err = A !C44{12!(2}(k2 "“"& }}.“2»“{’;(1 "“kw -+ zkazﬂrﬂ 2 COs 2@"";’4;@‘44?‘»»2 +O{A3{}!44I‘ "
—2A,al3r” {K;([ ) +3r7 M, Ixz(l H —6A,0d,r *cos 20
2 ;
{(H«aso)KQ( )+7aaﬂf“il e K,(;«”*k;{f,{ +aa0}K2(l )+7aagi G
1
}cos 20— 1245[(1 +agolls + asol3]r ™ cos 20(3.7¢)

[ el

Epp = HEy+E,,) = {Ai{waer“erQ(bM kodyg)easlk,—kya trm)

- ! "
+A2{b44 zd“_‘;){ﬁ]zf ZK?(Jz) +r XK (12) "f"?jiz— XKz(;'{;’) } *“6;’441{}44)““ *
+4A5£0(b44~k1d44)l g;‘lxl(i) 3 ’Kz{«£~) 1;'"‘

+ 1214?[{;0(144(1(2 - kl) “(b44 "kzd‘;ﬂ;}a - ‘}!’N + Sin 2”.‘ (3.?d}

I, I - r
Epo = E(ErG—ESr) = ‘i‘Azbwiz 'K, }7) (3.7¢)

Substituting equations (3.7} in equations (3.2}, equating coefficients of like functions of 8,
we obtain a set of seven linear algebraic equations in the unknown constants 4, 4,,..., 4.

T
gll/il +0+g1:§A3+0+g151‘1§ +0+0 == “"‘j‘)‘ (383)
g2l’41+0+g23‘43+0+g25‘45+0+0 S ”'b(’; (BSb}
T :
83141 +0+0+g3,44 +0+83646 +8374, = 3 (3.8¢)
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In which

834

837

8a

—

842

8a

>

8a7

8s6

861

862

ge6a

84141 +84,4,+0+844 A, +0+g4646+8474, =0

bﬁ

€514, +0+0485,4,+0+g5cAc+85,4, = 5

8614118624, +0+86444+0+ 86646 +86747 =0

R
Ayb.15 'K, (—) =0.

- _ -2 _ -1 _1.-1 -1
= —C4qR7" = —a7 gy =507 gy = a7 gy,

= —2gl} 1(k1 —k;y)caaR™ 1K1(l§)
1

= —dR7? = —a_1g23

R
= [(1 +11_1)K0(l—) +211‘1I§II1R‘1K1(IB”
1

1

= “60“'44R_4 = 54

R
= —2k ! ‘l(lo_lg) 6R_2K2 T +ll_1R_1K 5
L i

1
= =127tk '(G-B)R™* = gs,
= 12(k, “1‘1)04413R~4 —[(k, _kz)"‘20"‘2]‘3441{_2
= 2al§R'1(K1 +3L,R™'K,)

R
(1+'7_‘)K2( )+2f7_112[6R ZKz(l) Il_lR_lKl(

= —12BR™*— 124" Y(2—1})R™* = g,

= —47‘1k;1(13—1§)[3R‘2K2(15) +lf1R‘1K1(l§)]
1 1

= —akycyyR™2+12(k, —k )c 2R ™4

R
- g stk 21 ] + R (F)+ i) |
2

= —6ad, R™* =g,,

ol ]
1

il

(3.8d)

(3.8¢)

(3.8f)

(3.8g)

(3.9
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where

= a by, ~kydy.),

Bo=a (145" ith,, +2by.)—

B o=a Yby+b.-—kyd,,)
12 = a by ~kyd
not = as.
The solution of the seven equations is

f‘R”
Ay = (1= MN)),
3“44

A‘: = 0

2

TR? RN,
Ay = == 21 = MN,J] b 5ot (I»{;-)

A% Cha 2ac uNn

TR* TR*MN, TR*

Kitdy, +2d,4)1

)

A4 s e e e 1 i{g%-f%§

ey, ad 6ac 4 EL T

"'L+MN3 M
82T 4 TR 4eK
ko T —2b,
AS e *_,}\G e
A;":‘ ”gﬁzﬁleﬁ
A j‘im—»{w 2MN kTR ﬂ
’ AR mg“

where

-MN 1+ 1212R 72,

'R
Ny = (1 +n“1)K0(-§3) +Zfz*‘iéf{*R“‘K1(;} .
1 1

N, = 2n*‘(zng§)z;1t{‘1i<l(1§),
1

1

i
R
(1+n”’}f<,( )Hzn”iizll“zlxz(

_ ky~ky+ak,
T (kg —ky+ak )N, —aNky

M

!

R
\Zi '

R
N, = (Hfr”)Kz(f) «2;1“'11;3;‘,?”1(1(

R) 207 R lR”*Kl(

R
!

Ry (k ~ ~.
K( ) e~ 7:-;(1«;*131312“"‘)(1~~~MN))},

.

(3.11d)

{3.11e
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Substituting equations (3.6) in the constitutive relations, we get the circumferential
component of stress:

Tgo = AjCaal 2 — A30Csr "2 +6A400,4r % 08 20+ 2458007 teyulk, — k)
T
1

« [r1(6r-11<2(1) +1;1K1(5)) +112K2(1)j| cos 26
I, I I,

+ 124k 'y~ (12— B)r* cos 20+ (1—cos20) (3.13)

The maximum value of 74 at the surface of the hole occurs at 8 = + /2. We find

[7e6] boks ! 21 Y5 —1) l_ Iy R
— max __ N.— K —K
Fe==r" =37, " g | 11 RO

R
- +—2(1+2MN3)
1] 82

-1
+MN1—”T(I(2)—I§)[3MR‘2K2(

- n (5 —15) 11 R
—(1+1213R 2)(1—1\41\/1)} +-—W[Ko(l) EKI(E)]

4alZk,
2Mn_1(l‘—12) Ry L L R R
I e e e R Y
+l__1(llg_‘@[4 +3MN3~ u1+121 )(I—MNl)]- (3.14)
0

The quantity F,, so defined, is the stress concentration factor.

4. STRESS-CONCENTRATION FACTOR

The result of the previous section shows that the stress concentration factor F, depends
upon the radius of the hole, three length properties of the material [, [, and I;. Poisson’s
ratio v, electromechanical coupling factors k, and k,, and the reciprocal dielectric suscep-
tibility #~!. The present continuum theory is concerned only with macroscopic cylindrical
hole and since I, /, and [; are of the order of magnitude of the interatomic distances so that,
in the domain of validity of the continuum hypothesis, R/l,, R/l, and R/l; are large numbers.
After making use of the asymptotic representation (m/2y)* e ~* for the Bessel function
K, (x) [3], we get stress concentration factor

[To0)r = ro0= + /2 Jo
F =R 7 e idad
¢ T 3+ T+f1 (4.1a)
where
2bg(Cqqdi(—C{,d
fo=— olCasl1y 11 44)’ (4.1b)

2
biici—diy
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and
] P - . 3
- dyglegad,; —0, 1d44)

3 {4.1c)
Caalbyiopy —diy)

f] =

Thus, if the constants by, d,, and d,,, the coeflicients associated with terms involving
the product of polarization gradient and strain in the energy density are neglected, the
second and third terms in equation {(4.1) are zero and the stress-concentration factor reduces
to the usual value 3 [4]. The second term in equation (4.1} is the concomitant stress arising
from the surface energy at free surface given by Mindlin [1]. According to the values given
by Askar et al. [5] the coefficient f, is positive and of the same order of magnitude as ¢, .
the elastic stiffness of the material. This term represents the interaction of the applied stress
and surface energy. By the requirement that the energy density W must be positive definite.
it can be shown that

i

b —diy >0
: 4.2
Caaldyy —Cyidyy >0 (-2}
and
dyg < 0.

Thus the third term is always positive. Coupling the solutions for three simple problems of
homogeneous deformation, viz. simple tension, hydrostatic pressure, and shear with the
conditions for positive definiteness of the potential energy density, the appropriate range
for f, is 0 < f, < {5. Within this range, the classical stress concentration factor is about
10 per cent less that that given by (4.1), even though the surface energy effect is neglected.
It appears that the fracture strength and the onset of static yielding on some dielectric
materials in the presence of stress concentration may occur at lower loads than might be
expected on the basis of stress concentration factors calculated from the classical theory of
elasticity.
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ABerpaktT—/JadTcs pelienye 3aiady LIHHAPUIECKOTO OTBEPCTUS B OO NPOROIBHOTO PACTHKEHUs, B
paMKax JIMKeHHOM TEOpMM YHPYTHX AMIEKTPHKOB. B ITHX IMONEKTPHKAX, TOTEHUMANBHAR IHEPIUSA
MIOTHOCTH AeOPMALIAH ¥ FIONAPUIALMHM 3ABUCHT KaK OT FPAAMEHTA TIONAPH3AMMM, TaK K OT caMoi

aedopManuyu ¥ NONSPUIALMA.
Hadtes KO3OPUIHEHTA KOHUEHTPALMY HATIDSKEHUH HA NOBEPXHPCTH LTHHAPHHECKOTO OTBEPCTHRA.



